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§ Shock waves are a sharp change in pressure that moves through
a medium

§ Shock waves carry energy, which dissipates at the front
of the shock wave

§ Shock waves have a great
impact on a wide variety of
engineering and scientific
applications

Introduction: Shock waves occur in many mediums and 
have a large impact on experimental design

Supersonic flow past a cylinder at Mach 2 Simulating shock waves in supernova remnants

Jet flying at supersonic speeds
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Introduction: Shock waves occur in many mediums
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§ In non-linear hyperbolic PDEs like the Euler equations, shock waves become 
unresolvable singularities

§ Differentiating across a shock leads to Gibbs Oscillations 

§ Error manifests as oscillations occur because of unresolved features

§ Shock capturing is used in hydrodynamic simulations to numerically resolve shock 
waves

Introduction: Shock capturing is necessary to resolve shock-
dominated problems

Resolved without 
Bulk Viscosity

No Bulk 
Viscosity

With Bulk 
Viscosity
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§ Artificial viscosity (AV) is a type of shock capturing used in simulations and can be 
computationally expensive to compute

§ AV creates features that are resolved, thus making unresolved shock waves resolved

§ Miranda solves the hydrodynamics equations to high-order accuracy in space (10th) 
and time (4th)

§ Calculating AV and other artificial diffusivities in Miranda can account for >50% of the 
runtime

§ AV operator: 

Miranda uses a high-order artificial viscosity operator for 
shock capturing
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§ TensorFlow and Keras
— Open source machine learning platform
— Developed by Google
— Python package

§ Pyranda
— Mini-App of Miranda
— Solves PDEs using 4th order Runge-Kutta in time, 10th order finite 

difference in space
— Specify equations of motion and initial conditions and grid spacing

§ Python
— Scipy – Analysis via error norms
— Matplotlib – Visualization

Tools
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§ Artificial neural networks (NN) are computer models that mimic the structure of the 
human brain composed of layers. 

§ Perceptrons (nodes) compose each layer of the NN

§ Each perceptron learns weights in order to
maximize the objective function

§ These weights are determined through the
analysis of training datasets.

§ Regression: A NN uses weights learned
through training to predict the outputs
based on inputs

Neural networks can be used as a regression model
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1. Can a NN accurately predict AV?
• Gather representative training data
• Train a neural network model
• Apply the model to shock dominated problems and assess its 

accuracy

2. Can a NN be optimized to decrease the computational cost of 
computing AV?

Primary objectives for summer research 
project
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1. A shock-dominated test problem using 
the traditional AV operator

2. Use a stencil to make an array of 
velocity values near the point of 
interest

a. Velocity values before and after the point 
are collected

3. The corresponding AV value for the 
point of interest is collected

4.

Creating a training dataset with shock-dominated test 
problems
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§ Due to different scales of shock-dominated problems, a model trained with a specific 
Mach number, nondimensionalizing needs to be used

§ Velocity
—

§ Artificial Viscosity
—

§ NOTE: In situations where the shock occurs in multiple directions, symmetrical data 
gathering is needed
— Using a 1D simulation
• Collect from left to right
• Duplicate and flip

Using nondimensionalization to create a universal model
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§ Software: TensorFlow — Keras

§ Neural Network Structure
— 3 Sequential layers
— Each layer is dense (all nodes are interconnected)
— ReLU activation function
— Loss Function: MSE

§ The neural network is reduced to a regression model

§ 80% of the dataset collected from the shock-dominated problem was used as training 
data

§ 20% of the dataset was used as validation data

§ 100 epochs were used to generate the model

Training a neural network to approximate the AV operator
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§ AV operator: NN-AV operator:  

§ During each step in 4th order Runge-Kutta:
— Use a stencil to collect an array of velocity

values for each point in the domain
• u[i-3:i+3]

— Use the NN to predict the AV values

— Substitute the predicted AV values from NN
model into the simulation

§ Analysis
— Compare NN-AV results and traditional AV

data with highly resolved simulations using
errors in density

Implementation and Analysis of the neural-network-based 
AV operator
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§ Single variable hyperbolic PDE that allows for 
shock waves

§ ν is the artificial viscosity term, no physical 
viscosity is used

§ A neural network model was trained on a simple 
breaking wave

§ This model was applied to the same problem and 
compared with the results from the traditional AV 
calculation.

The Viscous Burgers’ Equation
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Relative Error in Velocity between
AV Operator and NN-AV and Resolved 

Calculation*
L1 L2 𝐿!

AV
Operator

Traditional 2.690e-02 1.471e-02 1.242e-02

NN-AV 2.659e-02 1.429e-02 1.184e-02

Applying the NN-AV to the Viscous Burgers’ Equation

*Resolved calculation was run using the traditional AV operator and 10000 spatial points (50x)
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Viscous Burgers’ Equation at t=0.3

§ The NN model follows the same 
structure as the traditional AV 
operator

§ The NN-AV has the proper scaling

§ The shape of NN-AV is slightly 
different and has smooth 
discontinuities
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Implementing a universal model based on the 1D Sod Shock 
Tube Problem
§ When training a 1D model, it is 

biased for shocks in 1 direction

§ This can be overcome by using 
mirroring to get symmetric training 
data, as though the shock was 
propagating in both directions

§ Epoch: The number of iterations 
that the entire training dataset has 
been processed

§ MSE: A loss function used to 
evaluate accuracy

§ These are operations completed by 
TensorFlow
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Applying the 1D Sod Shock Tube model to itself

Relative Error in Density between
AV Operator and NN-AV and Resolved 

Calculation*

L1 L2 𝐿!

AV
Operator

Traditional 8.452e-03 1.286e-03 6.035e-04

NN-AV 9.304e-03 1.338e-03 6.074e-04

*Resolved calculation was run using the traditional AV operator and 10000 spatial points (50x resolution)
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Applying the 1D Sod Shock Tube model to the Shu-Osher
Problem

Relative Error in Density between
AV Operator and NN-AV and Resolved 

Calculation*

L1 L2 𝐿!

AV
Operator

Traditional 1.665e-02 2.767e-03 1.998e-03

NN-AV 1.439e-02 2.618e-03 2.119e-03

*Resolved calculation was run using the traditional AV operator and 10000 spatial points (50x resolution)
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Applying the 1D Sod Shock Tube model to the 2D problem

Density
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Relative Error in Density between AV Operator and NN-AV and 
Resolved Calculation* in the 2D Sod Shock Tube

*Resolved calculation was run using the 
traditional AV operator and 1048576 
spatial points (64x resolution)
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Applying the 1D Sod Shock Tube model to the Sedov Blast Wave

Density
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Relative Error in Density between AV Operator and NN-AV and 
Resolved Calculation* in the Sedov Blast Wave

*Resolved calculation was run using the 
traditional AV operator and 1048576 
spatial points (64x resolution)
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Applying the 1D Sod Shock Tube model to the Triple Density 
Problem
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Relative Error in Density between AV Operator and NN-AV and 
Resolved Calculation* in the Triple Density Problem

*Resolved calculation was run using the 
traditional AV operator and 840000 
spatial points (16x resolution)
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Implementing a universal model based on the 2D Sod 
Shock Tube Problem
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A model trained with a 2D shock dominated problem has 
similar accuracy to that trained with a 1D problem

L𝟐Relative Error in Density between
AV Operator and NN-AV and Resolved 

Calculation
AV 1D

NN-AV
2D

NN-AV

Problem

1D Sod 1.286e-03 1.345e-03 1.338e-03

2D Sod 2.895e-04 2.901e-04 3.192e-04

Sedov
Blast Wave 8.540e-04 1.099e-03 9.812e-04

Triple Density 1.600e-05 1.582e-05 1.824e-05
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§ The NN-AV does not explicitly create a high-order accurate model

§ To calculate order of accuracy

§ h : number of points in the domain

§ C : constant

§ p : order of accuracy

§ The max AV value was collected from different resolutions of Burgers’ equation before 
the shock formed using both the traditional AV operator and NN-AV.

Order of accuracy of traditional AV is high-order by construction
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AV Operator is 8th order accurate
NN-AV is 2nd order accurate

WIP
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§ To a reasonable degree of accuracy, neural networks can accurately to 
predict artificial viscosity values in shock dominated problems

§ By creating a model using one shock-dominated problem as a training 
dataset, the model can be used to predict artificial viscosity values in 
other shock-dominated problems

Conclusion: AV can be modeled accurately using a Neural 
Network
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§ Decrease runtime
— Optimize model prediction to decrease computation time needed
— Optimize variable insertion to Miranda so each step doesn’t require calculating AV

§ Model improvement
— Train a NN over mach numbers
— Make a more universal model
— Make the model high-order accurate

§ Create NN for each artificial diffusivity, including:
— Thermal conductivity
— Vorticity
— Shear viscosity

Future Work
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