R (cm) \times 10⁻⁶

De
Dog

BYUE

Hohlraums are laser-driven x-ray ovens that are central to studies of high energy density (HED) physics and inertial confinement fusion (ICF) phenomena. The design of hohlraum-driven experiments is guided by finiteelement, radiation-hydrodynamics simulations which must provide an accurate and converged model of expected physical behavior. In relevant HED-ICF codes, the initial meshing of the hohlraum and its interior, typically a fill gas and/or target, must be optimized to resolve the appropriate level of physics and accurately determine all of the integrated values, such as the laser-wall interaction that produces the x-ray drive. In this work, we use an Arbitrary Lagrangian-Eulerian (ALE) multiphysics code, KULL, to perform convergence studies of the mesh resolution for laser-driven hohlraums in both one- and two-dimensions. Additionally, we investigate the accuracy and efficiency of ALE mesh motion strategies for coarser meshes relative to highly-resolved pure-Lagrangian and Eulerian meshes.

- Determine the mesh requirements to have simulations within the convergence regime. This was determined by calculating the Least Absolute Deviations, pointwise L1 Norm.
- In the initial mesh, there were 3 parameters that we focused on: the number of zones in the fill gas and in the hohlraum wall, and the width of the first ablation zone.
- Conduct pure-Lagrangian simulations by decreasing the width of the first zone until the integrated results begin to converge.
- Systematically increase the number of zones in the hohlraum wall to find when the results begin to converge. Repeat with the zones in the fill gas.
- Select the highest resolution case to be used as an reference case and then select a moderate case to which mesh motion relaxers are applied.
- In the two-dimensional simulations, in addition to pure-Lagrangian simulations, we also investigated the same quantities using an Eulerian ALE scheme.

where h is the grid spacing, E is the error, C is a constant, and p is the order of convergence. Since an exact solution is not available, we treated our highest resolution case as the exact solution. This equation is equivalent to:

— Rathkopf et al.

Introduction

Approach

Hohlraum Mesh Design and Mesh Motion Strategies in KULL

Aaron Larsen^{1,2}, Kevin Driver², Branson Stephens²

¹Brigham Young University, ²Lawrence Livermore National Laboratory – Weapons and Complex Integration

The order of grid convergence can be calculated through the following equation:

$E = f(h) - f_{exact} = C \cdot h^p$ + Higher Order Terms

$$
\log(E) = p \cdot \log(h) + \log(C)
$$

where the higher order terms are disregarded.

Grid Convergence

To use the statistical measurement of the L1 Error, calculate the pointwise difference between the reference case and the test case, sum all of the

values and find the mean: $\frac{\sum_{i=0}^{\infty} |f(h)-f_{reference}|}{\sum_{i=0}^{\infty} |f(h)-f_{reference}|}$

\overline{N}

where N is the number of points.

L1 Error