THEORY AND SIMULATION OF HIGH-TEMPERATURE GAS IN SHOCK TUBES

Aaron Larsen Ozgur Tumuklu (now at RPI) Kyle Hanquist

Movie from Hanson Research Group Stanford University

Outline

- Motivation
- Background
- Approaches
 - Analytical
 - NASA CEA (Chemical Equilibrium with Applications)
 - Computational Fluid Dynamics
 - brODErs
 - SU2
- Results
 - Comparison between post-shock conditions
- Conclusions and Future Work

Motivation

Motivation

- Shock tubes and especially reflected shock tubes are used to assess highfidelity chemical kinetic approaches
- Assumptions are made when modeling the shock tube (e.g., heat bath) = *uncertainty*
 - Are discrepancies due to assumptions or chemical kinetic data/approaches?
- Experimentalists also make assumptions when extracting shock tube data = *uncertainty*
- Goal: reduce this *uncertainty*

Vibrational state populations in a modeling vs. Experiment

reflected shock tube flow (10,700 K) – Hanquist, et al., AIAA Paper 2020-3275

Background

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT 1333

ATTENUATION IN A SHOCK TUBE DUE TO **UNSTEADY-BOUNDARY-LAYER ACTION**

By HAROLD MIRELS

THE PHYSICS OF FLUIDS

VOLUME 9, NUMBER 7

JULY 1966

Correlation Formulas for Laminar Shock Tube Boundary Layer

H. MIRELS. Aerospace Corporation, El Segundo, California (Received 27 December 1965)

The laminar boundary layer behind a moving shock is studied. The major objective is to obtain improved correlation formulas (valid for large W, where W is the density ratio across the shock) and to simplify the procedure for obtaining boundary-layer parameters. Numerical solutions for shear, heat transfer, and boundary-layer thicknesses are presented for $1 \le W \le \infty$, $\sigma = 0.67$, 0.72, and 1.0 (σ is the Prandtl number) assuming constant $\rho\mu$ (ρ is the density and μ , the viscosity) and an ideal gas. Correlation formulas are obtained which agree with these numerical results to within fractions of a percent. Approximate corrections for variable pµ and real-gas effects are then introduced. Charts and tables are presented which describe boundary layers in air $(M, \leq 22)$ and argon $(M, \leq 10)$.

Shock Tube Test Time Limitation **Due to Turbulent-Wall Boundary Layer**

HAROLD MIRELS* Aerospace Corporation, El Segundo, Calif

Shock tube test time limitation due to the premature arrival of the contact surface is analytically investigated for wholly turbulent-wall boundary layers The results are compared with those for wholly laminar-wall boundary layers It is found that, for a given shock Mach number M_p , the maximum possible test time (in a long shock tube) varies as $d^{1/4}p = t^{1/4}$ and $d^{3}p_{m}$ for the turbulent and laminar cases, respectively (d = tube diameter, p_{m} = initial pressure) For $3 \leq M_1 \leq 8$ in air or argon, it is found that the turbulent-boundary-layer theory for maximum test time applies, roughly, for $dp_{\pm} \gtrsim 5$, whereas the laminar theory applies, roughly, for $dp_m \leq 0.5$ A transitional-boundary-layer theory is required when $dp_m \approx 1$ (d is in inches; p_{w} is in centimeters of mercury) When $dp_{w} \approx 5$, turbulent theory for both air and argon indicates test times of about one-half to one-fourth the ideal value for $x_i/d = 45$ to 150, respectively $(x_i = \text{length of low-pressure section})$ Higher values of dp_{∞} result in more test time When $dp_{in} \approx 0.5$, laminar theory indicates about one-half ideal test time for $x_s/d = 100$ Lower dp., reduces test time Working curves are presented for more accurate estimates of

test time in specific cases Boundary-layer closure occurs, in long shock tubes, when $M_s \leq 1.2$ and $M_1 \lesssim 3$ for laminar and turbulent boundary layers, respectively

Experimental setup

- Experimental design setup by Streicher et al. using shock tubes with nondilute O_2
- Pressure transducers and lasers near the wall assist with collection of pressure and velocity data
- Attempt to assess different modeling approaches

Streicher, et al, Physics of Fluids, 2020.

Objectives

- Compare computational tools to model shock tubes
- Validate against experimental data
- Model reflected shock tubes
- Apply vibrational state-to-state modeling within shock tubes

Approaches

- Analytical
- NASA CEA (Chemical Equilibrium with Applications)
- brODErs
- CFD

Analogy to CFD

Analytical

We assume the gas is calorically perfect. Using the experimental setup by Streicher et al, we have the following conditions in section 1 of the shock tube: $p_1 = 0.07$ Torr = 9.33 Pa and $u_p = 2.51$ mm/ μ s=2510 m/s. We further set the entire shock tube at T = 295 K. The speed of sound in section 1 is

$$a_1 = \sqrt{(1.4) \left(259.84 \frac{\mathrm{J}}{\mathrm{kg K}}\right) (295 \mathrm{K})} = 32$$

Using the following relation, we are able to calculate the pressure in section 2 of the shock tube:

$$u_{p} = \frac{a_{1}}{\gamma} \left(\frac{p_{2}}{p_{1}} - 1 \right) \left(\frac{\frac{2\gamma}{\gamma+1}}{\frac{p_{2}}{p_{2}} + \frac{\gamma-1}{\gamma+1}} \right)^{\frac{1}{2}} \implies \frac{p_{2}}{p_{1}}$$
$$p_{2} = \frac{p_{2}}{p_{1}} p_{1} = 940.289 \text{ Pa}$$

 $27.59 \frac{m}{s}$

 $\frac{p_2}{p_1} = 100.781$

Analytical

To calculate the wave speed, the density ratio across the shock is needed

$$\frac{\rho_2}{\rho_1} = \frac{1 + \frac{\gamma + 1}{\gamma_1} \left(\frac{p_2}{p_1}\right)}{\frac{\gamma + 1}{\gamma - 1} + \frac{p_2}{p_1}} = 5.67$$
$$w = \frac{u_p}{1 - \frac{\rho_1}{\rho_2}} = 3047.22 \frac{m}{s}$$

Computing the velocity behind the shock, relative to the wave, u_2

$$u_2 = w - u_p = 3047.22 - 2510 = 537.22 \ \frac{\mathrm{m}}{\mathrm{s}}$$

Additionally, the temperature behind the shock wave is

$$T_2 = T_1 \frac{p_2}{p_1} \left(\frac{\frac{\gamma+1}{\gamma-1} + \frac{p_2}{p_1}}{1 + \left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{p_2}{p_1}\right)} \right) = 5241.41 \text{ K}$$

$$\implies M_s = \frac{w}{a_1} = 9.30198$$

10

Analytical

We now can solve for the properties behind the reflected wave. Due to the nature of the reflected wave $u_5 = 0$. We can find the Mach number of the reflected wave using the relation

$$\frac{M_R}{M_R^2 - 1} = \frac{M_s}{M_s^2 - 1} \sqrt{1 + \frac{2(\gamma - 1)}{(\gamma + 1)^2} (M_s^2 - 1) \left(\gamma + \frac{1}{M_s^2}\right)} \implies M_R = 2.57$$

To find the pressure behind the reflected shock

$$p_5 = p_2 \left(1 + \frac{2\gamma}{\gamma+1} (M_R^2 - 1) \right) = 7088.89$$
 Pa

and to find the temperature post-reflected shock, we have

$$T_5 = T_2 \left(\left[1 + \frac{2\gamma}{\gamma+1} (M_R^2 - 1) \right] \left[\frac{2 + (\gamma - 1)M_R^2}{(\gamma + 1)M_R^2} \right] \right) = 11571.5 \text{ K}$$

NASA CEA

- NASA's Chemical Equilibrium with Applications program calculates chemical equilibrium compositions and properties
- For shock related problems, the conservation equations are solved for
- Shock-tube parameters are input and the incident and reflected fluid conditions are output for frozen and equilibrium mixtures
- Databases with transport and thermodynamic properties of individual species are used

NASA CEA

• Using NASA CEA with u = 3047.22 m/s, p = 0.07 Torr, and T = 295

Chemistry	Shock Type	Velocity [m/s]	Ρ	
Frozen	Incident	405.68		
Frozen	Reflected	558.18		
Equilibrium	Incident	273.90		
Equilibrium	Incident	344.18		

Pressure [Pa] Temperature [K]

989 4163.44

9080

8074.64

1038

2621.99

12932

3307.21

brODErs

- brODErs is a collection of ODE solvers for chemically reacting hypersonic flows developed at the von Karman Institute for Fluid Dynamics
- The downstream flow field is computed by solving one-dimensional conservation equations of mass, momentum, global energy, as well as conservation of vibrational energy of the
- Problem Setup:
 - Freestream Pressure = 9.33 Pa
 - Freestream Temperature = 295 K
 - Freestream Velocity = 3047.22 m/s

radiative heat flux modeling for the Huygens entry probe. Journal of Geophysical Research: Planets, 111(E7).

Translational Temperature

Particle Velocity

CFD – Unsteady

- 1D simulation of shock-tube
- Focusing on what occurs after the diaphragm is ruptured (figure a)
- Mixture: O_2
- Chemical reaction rates determined by Park (1993)
- Approaches
 - 2T Translational and Vibrational effects
 - 1T Forces thermal equilibrium
 - Frozen No chemical reactions occurring

CFD – Unsteady

- Navier-Stokes Solver
- Mesh: 1D with 10000 cells; 1 m long
- Boundary Conditions
 - Symmetry walls (no boundary layer effects)
 - Euler condition on the far wall (no gradients across the wall)

SU2-NEMO CFD Code

Maier, et al., AIAA Paper 2023-3488

Pressure

Temperature

CFD – Unsteady

Rarefied Gas Dynamics 2024

19

CFD – Unsteady

RCH

CFD – Unsteady – 1T

CFD – Unsteady – 1T

Rarefied Gas Dynamics 2024

22

CFD – Unsteady – Frozen

CFD – Unsteady – Frozen

CFD – Unsteady

- We are able to calculate the speed of the shock wave
 - dx = physical distance of shock between two snapshots
 - dt = 1e-10 set within the simulation
 - Simulation snapshot every 5000 iterations

$$u_2 = \frac{dx}{5000 \cdot dt} = 504.75 \frac{\mathrm{m}}{\mathrm{s}}$$

25

Summary of Results

Post-Shock Property	Analytic al	NASA CEA	brODErs (Post-Shock)	CFD (Frozen)	CFD	CFD (1T)
Pressure [Pa]	940.29	989	986.11	924.1	894.03	951.98
Temperature [K]	5241.41	4163.44	4233.08	5020.5	4923.6 7	3920.4
Velocity [m/s]	537.22	405.68	413.70	504.75		

26

Conclusions

- Shock tubes are:
 - A simple experiment (diagnostics not simple!)
 - Simple to model with analytical theory but this theory misses out on some relevant physics
 - Challenging to perform CFD on
- CFD simulations with frozen chemistry match closest with the analytical calculations, due to the frozen assumption
- Computational Cost
 - CFD is the most expensive, takes into account the most chemistry and kinetics
 - NASA CEA is fastest
 - brODErs fast but can include more

Future Work

- Model a full shock tube with expansion and reflected waves
- Model boundary layer effects
- Apply state-to-state transitions to the shock-tube environment
 - Presentation on Vibrational State-to-State Thermochemical Modeling of High Temperature Oxygen Flows on Friday

Rarefied Gas Dynamics 2024

QUESTIONS/DISCUSSION

aaronml@arizona.edu

chanl.arizona.edu

Rarefied Gas Dynamics 2024

