VIBRATIONAL STATE-TO-STATE THERMOCHEMICAL MODELING OF HIGH-TEMPERATURE OXYGEN FLOWS

Aaron Larsen

Kyle Hanquist

Energy

Internuclear Separation (r)

Outline

- Motivation
- Background
- Approaches
 - Mapping approaches
 - State-to-State / Mutation++
 - Multi-Temperature
- Results
 - Mapping
 - Contours
 - State-to-State simulations of oxygen and oxygen diluted in argon
- Conclusions and Future Work

Motivation

Background - Nonequilibrium Flows

Neitzel, Andrienko, and Boyd, "Aerothermochemical Nonequilibrium Modeling for Oxygen Flows," JTHT, 2017. Holloway, Hanquist, and Boyd, "Assessment of Thermochemistry Modeling for Hypersonic Flow over a Double Cone," JTHT, 2020.

Background - Nonequilibrium Flows – Multi-Temperature

Two-temperature (2T)

Energy Transfer

$$\frac{\partial(\rho e_{vib})}{\partial x} = \rho_{O_2} \frac{e_{vib}^* - e_{vib}}{\tau_{vib}}$$

Millikan-White (MW)

$$p\tau_{vib} = \exp(A(T^{-1/3} - B) - 18.42)$$
 [atm -

Park's High Temperature Correction (HTC)

$$p\tau_{Park} = \frac{1}{n\sigma_{vib}c} \quad [atm - sec]$$

Chemistry O₂+O ↔ O+O+O $k_f = A \cdot T^{\alpha} \exp(-E/T)$

Background – Nonequilibrium Flows – State Resolved

Mach 5 flow

Bound-Bound Transitions (rates) **Bound-Free** Transitions (rates)

Analytical theory (e.g., Forced Harmonic Oscillator (FHO)) Quantum chemistry (e.g., Quasi-classical Trajectory (QCT))

$$\frac{dn_{\nu}}{dx} = \sum_{s} \left(R_{\nu,s} n_{O}^{2} n_{s} - D_{\nu,s} n_{\nu} n_{s} \right) + \sum_{s} \left(K_{\nu',\nu} n_{\nu}' n_{s} - K_{\nu,\nu'} n_{\nu} n_{s} \right), \qquad \nu = 0, \dots, \nu_{max}$$

Rarefied Gas Dynamics 2024

Motivation

Bound-Bound Transitions (rates) **Bound-Free** Transitions (rates)

- Rates from quantum chemistry are expensive and often done on <u>different</u> vibrational energy ladders
- This creates a modeling challenge for complex mixtures
- Goal: develop a consistent mapping between vibrational ladders

Analytical theory (e.g., Forced Harmonic Oscillator (FHO)) Quantum chemistry (e.g., Quasi-classical Trajectory (QCT))

Motivation - Example

Assess chemical kinetics with shock tube data

Shock-tube measurements of coupled vibration-dissociation time-histories and rate parameters in oxygen and argon mixtures from 5000 K to 10000 K 🕫

- O_2 -O (Varandas 0 -> 46 vibrational energy levels)
- $O_2 O_2$ (Varandas 0 -> 46 vibrational energy levels)
- O₂-Ar (Dunham 0 -> 36 vibrational energy levels)

OBJECTIVE 1: MAP RATES FROM ONE VIBRATIONAL LADDER TO ANOTHER

Rarefied Gas Dynamics 2024

Approach – Mapping – Taylor Series Expansion

*Andrienko and Boyd, "Kinetics of O2-N2 collisions at hypersonic temperatures," AIAA Paper 2018-3438. **Mavriplis, "Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes," AIAA Paper 2003-3986.

Rarefied Gas Dynamics 2024

O₂-Ar bound-bound rates at 3000 K

O₂-Ar bound-bound log(rates) at 3000 K

O₂-Ar bound-bound rates at 5000 K

O₂-Ar bound-bound log(rates) at 5000 K

O₂-Ar bound-bound rates at 10000 K

O₂-Ar bound-bound log(rates) at 10000 K

Mapping Approaches – Radial Basis Functions (RBF)

$$egin{aligned} \phi(r) &= r^2 \log(r) & r &= \|\mathbf{v} - \mathbf{d}_i\| \ f(\mathbf{v}) &= \sum_{i=1}^N w_i \phi\left(\|\mathbf{v} - \mathbf{d}_i\|
ight) \end{aligned}$$

$$egin{bmatrix} \phi\left(\|\mathbf{d}_1-\mathbf{d}_1\|
ight)&\cdots&\phi\left(\|\mathbf{d}_1-\mathbf{d}_n\|
ight)\ \phi\left(\|\mathbf{d}_2-\mathbf{d}_1\|
ight)&\cdots&\phi\left(\|\mathbf{d}_2-\mathbf{d}_n\|
ight)\ dots&dots&dots\ dots&dots\ dots&dots\ dots&dots\ dots&dots\ dots\ dot$$

O₂-Ar bound-bound rates at 3000 K

O₂-Ar bound-bound log(rates) at 3000 K

O₂-Ar bound-bound rates at 5000 K

O₂-Ar bound-bound log(rates) at 5000 K

O₂-Ar bound-bound rates at 10000 K

O₂-Ar bound-bound log(rates) at 10000 K

OBJECTIVE 2: PERFORM STATE-TO-STATE SIMULATIONS OF OXYGEN-ARGON FLOWS

Rarefied Gas Dynamics 2024

Approach – State-to-State Modeling

- Approach 1: perform state-to-state simulations in 1D code designed for argonoxygen mixtures¹
 - Olt works!
 - Difficult to test different configurations/mixtures

$$\frac{dn_{\nu}}{dx} = \sum_{s} \left(R_{\nu,s} n_{O}^{2} n_{s} - D_{\nu,s} n_{\nu} n_{s} \right) + \sum_{s} \left(K_{\nu',\nu} n_{\nu}' n_{s} - K_{\nu,\nu'} n_{\nu} n_{s} \right), \qquad 1$$

- Approach 2: implement state-to-state capabilities into Mutation++, which is coupled to existing CFD codes
 - In development
 - More easily extended to different configurations/mixtures

¹Hanquist, Chaudhry, Boyd, Streicher, Krish, and Hansen, "Detailed Thermochemical Modeling of O2-Ar Mixtures in Reflected Shock Tube Flows," AIAA Paper 2020-3275.

²Scoggins, Leroy, Bellas-Chatzigeorgis, Dias, and Magin. "Mutation++: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++". SoftwareX 12, 2020.

 $v = 0, ..., v_{max}$

Results – Assess RBF mapping approach

Mach 9.44 oxygen flow at ~40 km altitude ¹

O2-O2 and O2-O rates²

¹Ibraguimova, Sergievskaya, Levashov, Shatalov, Tunik, and Zabelinkii, The Journal of Chemical Physics, 2013. ²Andrienko and Boyd, Physics of Fluids, 2015; Chemical Physics, 2017; The Journal of Chemical Physics, 2016.

Approach 1 – State-to-State Modeling

- Oxygen diluted in argon flows¹
- O_2 - O_2 and O_2 -O rates²
- O2-Ar rates³

Endwall Apertures 5 mm Beamsplitter Collimating UV F.S. Focusing optic windows lens Pellin-Broca Kistler prism Pressure Mirrors Transducer Shock Wave Fourth Harmonic PCB Generator Pressure Fiber optics Transducers 532 nm pump 5.24 cm Pulsed IR ⁻ 2nd harmonic Bristol **—** 4th harmonic Wavemete

¹Streicher, Krish, Hanson, Hanquist, Chaudhry, and Boyd, "Shock-tube measurements of coupled vibration-dissociation time-histories and rate parameters in oxygen and argon mixtures from 5,000-10,000 K," Physics of Fluids, 2020. ²Andrienko and Boyd, Physics of Fluids, 2015; Chemical Physics, 2017; The Journal of Chemical Physics, 2016. ³Kim and Boyd, Chemical Physics, 2014.

Case	5280 K Case	10710 K Case
Shock Velocity		
Incident [km/s]	1.55	2.24
Reflected [km/s]	0.79	1.09
Before Incident Shock		
Composition [mol fraction O ₂]	0.02	0.05
Pressure [torr]	2.25	0.08
Temperature [K]	296	296
Between Incident/Reflected Shock		
Composition [mol fraction O ₂]	0.02	0.05
Pressure [torr]	65.4	4.56
Temperature [K]	2,400	4,700
After Reflected Shock		
Pressure [torr]	344	28
Temperature [K]	5,300	10,700

Results – Diluted Oxygen Flows – 10,710 K case

6th vibrational state of O₂

Scoggins, Leroy, Bellas-Chatzigeorgis, Dias, and Magin. "Mutation++: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++". SoftwareX 12, 2020.

Rarefied Gas Dynamics 2024

Approach 2 – State-to-State and Mutation++

- We are not the first to perform state-to-state in Mutation++ • Rovibrational binning of nitrogen - Torres et al. O Collisional radiative of electronically excited argon flows - Boccelli et al.
 - But we are trying to create a generic state-resolved framework in Mutation++

¹Torres, Bellas-Chatzigeorgis, and Magin, "How to build coarse-grain transport models consistent from the kinetic to fluid regimes," Physics of Fluids, 2020.

²Boccelli, Bariselli, Dias, and Magin, "Lagrangian diffusive reactor for detailed thermochemical computations of plasma flows," Plasma Sources Sci. Technol., 2019.

Approach 2 – State-to-State and Mutation++

- Mutation++ requires:
 Mixtures
 Rates
 - O Thermodynamic database
 - Specific Heat
 - Enthalpy
 - Entropy
 - Gibbs Free Energy

Approach 2 – State-to-State and Mutation++

$$\begin{split} s_{\rm tr} &= NK \left[1 + \ln \left(\frac{Q}{N} \right) + T \partial_T \left[\ln \left(Q \right) \right] \right] \qquad s_{\rm int} = NK \left[\ln \left(\frac{Q}{N} \right) + T \partial_T \left[\ln \left(Q \right) \right] \right] \\ e_{\rm tr} &= RT^2 \partial_T \left[\ln \left(Q \right) \right] \qquad e_{\rm int} = RT^2 \partial_T \left[\ln \left(Q \right) \right] \\ h_{\rm tr} &= e_{\rm tr} + pv \qquad h_{\rm int} = e_{\rm int} \\ c_p)_{\rm tr} &= \left(\frac{\partial e_{\rm tr}}{\partial T} \right)_V + R \qquad (c_p)_{\rm int} = \left(\frac{\partial e_{\rm int}}{\partial T} \right)_P \\ g_{\rm tr} &= h_{\rm tr} - Ts_{\rm tr} \qquad g_{\rm int} = h_{\rm int} - Ts_{\rm int} \end{split}$$

Approach 2 – State-to-State and Mutation++ **Translational Mode**

$$Q_{\rm tr} = \sum_{a \in \mathcal{A}} \exp\left(-\frac{(\varepsilon_{\rm tr})_a}{kT}\right) = \sum_{n_1, n_2, n_3} \exp\left(-\frac{h_1}{8m}\right)$$

$$\exp\left(-\frac{(\varepsilon_{\rm tr})_a}{kT}\right) = \sum_{n_1, n_2, n_3} \exp\left(-\frac{h^2}{8mkT} \left[\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} + \frac{n_3^2}{a_3^2}\right]\right)$$
$$s_{\rm tr} = Nk \left[1 + \ln\left(\frac{Q_{\rm tr}}{N}\right) + T\partial_T [\ln(Q_{\rm tr})]\right]$$
$$= R\left[\frac{5}{2}\ln(kT) - \ln(P) + \ln\left(\left[\frac{2\pi m}{h^2}\right]^{3/2}\right) + \frac{5}{2}\right]$$
$$h_{\rm tr} = e_{\rm tr} + pv = RT^2\partial_T [\ln(Q_{\rm tr})] + RT = \frac{5}{2}RT$$
$$(\partial e_{\rm tr}) = \frac{3}{2} = \frac{5}{2}$$

h

$$(c_p)_{\rm tr} = \left(\frac{\partial e_{\rm tr}}{\partial T}\right)_V + R = \frac{3}{2}R + R = \frac{5}{2}R$$

R

Approach 2 – State-to-State and Mutation++ Rotational Mode

$$Q_{\rm rot} = \sum_{j=0}^{\infty} (2J+1) \exp\left(-\frac{\theta_{\rm rot}J(J+1)}{T}\right) \approx \int_0^\infty (2J+1) \exp\left[-\frac{\theta_{\rm rot}}{T}J(J+1)\right] dJ = \frac{T}{\sigma\theta_{\rm rot}}$$

$$\begin{split} s_{\rm rot} &= -\frac{\partial}{\partial T} \left[-NkT \ln \left[Q_{\rm rot} \right] \right] = R \left[\ln \left(\frac{T}{\sigma \theta_{\rm rot}} \right) + 1 \right] \\ h_{\rm rot} &= RT^2 \frac{\partial}{\partial T} \left[\ln \left(\frac{T}{\theta_{\rm rot}} \right) \right] = RT \\ (c_p)_{\rm rot} &= \left(\frac{\partial e_{\rm rot}}{\partial T} \right)_V = R \end{split}$$

Approach 2 – State-to-State and Mutation++ Vibrational Mode

$$Q_{\mathrm{vib}} = \exp\left(-\frac{\varepsilon_i}{kT}\right)$$

$$\begin{split} s_{\rm vib} &= -\frac{\partial}{\partial T} \left[-NkT \ln \left[\exp \left(-\frac{\varepsilon_i}{kT} \right) \right] \right] = -\frac{\partial}{\partial T} \left[-NkT \left[-\frac{\varepsilon_i}{kT} \right] \right] = 0\\ h_{\rm vib} &= RT^2 \frac{\partial}{\partial T} \left[\ln \left(\exp \left(-\frac{\varepsilon_i}{kT} \right) \right) \right] = RT^2 \left(\frac{\varepsilon_i}{kT^2} \right) = R\varepsilon_i \\ fc_p)_{\rm vib} &= \left(\frac{\partial e_{\rm vib}}{\partial T} \right)_V = 0 \end{split}$$

Approach 2 – State-to-State and Mutation++ Electronic Mode

$$Q_{\rm el} = \sum_{i} g_i \exp\left(-\frac{\theta_i}{kT}\right)$$

$$\begin{split} s_{\rm el} &= -\frac{\partial}{\partial T} \left[-NkT \ln \left[g_0 \exp \left(-\frac{\theta_0}{T} \right) + g_1 \exp \left(-\frac{\theta_1}{T} \right) \right] \right] \\ &= R \left[\ln(g_0) + \ln \left\{ 1 + \frac{g_1}{g_0} \exp \left(-\frac{\theta_1}{T} \right) \right\} + \frac{(g_1/g_0)(\theta_1)(T) \exp(-\theta_1/T)}{1 + (g_1/g_0) \exp(-\theta_1/T)} \right] \\ h_{\rm el} &= RT^2 \frac{\partial}{\partial T} \left[g_0 + g_1 \exp \left(-\frac{\theta_1}{T} \right) \right] = RT^2 \left[-\frac{g_1 \theta_1 \left(-\frac{1}{T^2} \exp \left(-\frac{\theta_1}{T} \right) \right)}{g_0 + g_1 \exp \left(-\frac{\theta_1}{T} \right)} \right] = \frac{R \theta_1 \left(\frac{g_1}{g_0} \right) \exp \left(-\frac{\theta_1}{R} \right)}{1 + \frac{g_1}{g_1} \exp \left(-\frac{\theta_1}{T} \right)} \\ (c_p)_{\rm el} &= \left(\frac{\partial e_{\rm el}}{\partial T} \right)_V = R \left(\frac{\theta_1}{T} \right)^2 \frac{\frac{g_1}{g_0} \exp \left(-\frac{\theta_1}{T} \right)}{\left[1 + \frac{g_1}{g_0} \exp \left(-\frac{\theta_1}{T} \right) \right]^2} \end{split}$$

Boltzmann Distribution at Equilibrium using Thermodynamic Database at 5000 K

Rarefied Gas Dynamics 2024

brODErs

- brODErs is a collection of ODE solvers for chemically reacting hypersonic flows developed at the von Karman Institute for Fluid Dynamics
- The downstream flow field is computed by solving one-dimensional conservation equations of mass, momentum, global energy, as well as conservation of vibrational energy of the
- Problem Setup:
 - Freestream Pressure = 31.18 Pa
 - Freestream Temperature = 250 K
 - Freestream Velocity = 5255 m/s

radiative heat flux modeling for the Huygens entry probe. Journal of Geophysical Research: Planets, 111(E7).

	— o	O ₂₁₅	$ O_{2_{31}}$
	O ₂₀	O ₂₁₆	O ₂₃₂
	$ O_{2_1}$	O ₂₁₇	O ₂₃₃
	$ O_{2_2}$	O ₂₁₈	— O ₂₃₄
	O ₂₃	$ O_{2_{19}}$	O ₂₃₅
	— <i>O</i> ₂₄	O ₂₂₀	O ₂₃₆
	O ₂₅	$ O_{2_{21}}$	O ₂₃₇
	$ O_{2_6}$	O ₂₂₂	O ₂₃₈
	O ₂₇	O ₂₂₃	O ₂₃₉
	$ O_{2_8}$	O ₂₂₄	O ₂₄₀
	$ O_{2_9}$	O ₂₂₅	$ O_{2_{41}}$
	O ₂₁₀	O ₂₂₆	O ₂₄₂
	$ O_{2_{11}}$	O ₂₂₇	O ₂₄₃
	$ O_{2_{12}}$	O ₂₂₈	O ₂₄₄
	O ₂₁₃	O ₂₂₉	O ₂₄₅
	O ₂₁₄	O ₂₃₀	O ₂₄₆
1			

0.30

brODErs

CFD – Unsteady

SU2 code

- Euler Solver
- Mesh: 5x5 Grid
- Boundary Conditions
 - Symmetry walls (no boundary layer effects)
- SU2-NEMO CFD Code
- Test Case: Heat Bath (section 5 of reflected shock tube)
- T = 15,000 K, P = 11040 Pa

Maier, et al., AIAA Paper 2023-3488

CFD – Unsteady

<u> </u>	O ₂₁₅	$ O_{2_{31}}$
$ O_{2_0}$	<i>O</i> ₂₁₆	$ O_{2_{32}}$
$ O_{2_1}$	O ₂₁₇	O ₂₃₃
$ O_{2_2}$	O ₂₁₈	O ₂₃₄
$ O_{2_3}$	O ₂₁₉	O ₂₃₅
O ₂₄	O ₂₂₀	O ₂₃₆
$ O_{2_5}$	$ O_{2_{21}}$	O ₂₃₇
$ O_{2_6}$	O ₂₂₂	O ₂₃₈
O ₂₇	O ₂₂₃	$ O_{2_{39}}$
$ O_{2_8}$	O ₂₂₄	O ₂₄₀
$ O_{2_9}$	O ₂₂₅	$ O_{2_{41}}$
O ₂₁₀	O ₂₂₆	$ O_{2_{42}}$
$ O_{2_{11}}$	O ₂₂₇	O ₂₄₃
$ O_{2_{12}}$	O ₂₂₈	O ₂₄₄
$ O_{2_{13}}$	O ₂₂₉	O ₂₄₅
O ₂₁₄	O ₂₃₀	O ₂₄₆

CFD – Unsteady

Translational Temperature

Pressure

Future work

Refine mapping appraoch

 Binning approach (10 state?)
 Machine learning/physics informed for rates

- Run in shock tube to assess thermal bath assumption
 - Are we not matching experimental data due to rates or assumptions (e.g., heat bath)?
 - Our talk on Monday
- Assess modeling approach with recent Hansen group data

Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O_2 and O_2 -Ar mixtures from 6000 to 14 000 K \blacksquare

Cite as: Phys. Fluids **33**, 05 Submitted: 18 February 20 Published Online: 10 May

Jesse W. Streicher,^{a)} (b) Ajay Krish, (b) and Ronald K. Hanson (b)

56107 (2021); doi: 10.1063/5.0048059 021 · Accepted: 15 April 2021 ·		仚	
2021	View Online	Export Citation	CrossMark

Acknowledgements

Mutation++ developers

 Thierry Magin
 Georgios Bellas

- Funding/resources
 - AFRL Summer Faculty Program (cleared for public distribution under case AFRL-2022-4769)
 - Computational resources and services provided by the University of Arizona's Research Data Center (RDC)

ition under case AFRL-2022-4769) niversity of Arizona's Research Data

QUESTIONS/DISCUSSION

aaronml@arizona.edu

chanl.arizona.edu

