Finite Difference Solution to the Bagley-Torvik Equation

Aaron Larsen ¹

¹ Brigham Young University, Utah, USA

UCUR 2020/Utah State University/February 7, 2020

BYU

- 1. The Fractional Derivative
- 2. Fractional Derivative Operators
- 3. The Conformable Fractional Derivative
- 4. Condition Number
- 5. Eigenvalues
- \triangleright Used to model physical and engineering processes
- \blacktriangleright Used to model anomalous diffusion
- \blacktriangleright Economic growth modeling
- \blacktriangleright Model of the Ebola Hemorrhagic Fever

General definition of the first derivative:

$$
\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=D^1f(x)
$$

This definition can be applied to $D^n f(x)$ where $n \in \mathbb{N}$.

Since the 17th century, mathematicians have considered when n is a non-integer. Thus began the study of fractional calculus.

Caputo Operator

$$
D_a^{\alpha}(f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_a^t \frac{f^{(n)}(x)}{(t-x)^{\alpha-n+1}} dx
$$

Riemann-Liouville Operator

$$
D_a^{\alpha}(f)(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_a^t \frac{f(x)}{(t-x)^{\alpha-n+1}} dx
$$

Where $\alpha \in [n-1, n)$

Note: $Γ(x) = (x - 1)!$

The Conformable Fractional Derivative

Khalil, et al. (2013) presented the following definition:

For $f : [0, \infty) \to \mathbb{R}$ and $t > 0$,

$$
T_{\alpha}(f)(t) = \lim_{\epsilon \to 0} \frac{f(t + \epsilon t^{(1-\alpha)}) - f(t)}{\epsilon}
$$

Where $\alpha \in (0,1)$

$$
T_{\alpha}(f)(t) = \lim_{\epsilon \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + \epsilon t^{\lceil \alpha \rceil - \alpha)}) - f^{(\lceil \alpha \rceil - 1)}(t)}{\epsilon}
$$

Where $\alpha \in (n, n+1]$

This is a more local definition of the fractional derivative, as opposed to the global nature of the Riemann-Liouville and Caputo operators.

Differences between the fractional derivative operators and the conformable fractional derivative

- \blacktriangleright Using the Riemann-Liouville operator, $D_a^{\alpha}(1) \neq 0$.
- \blacktriangleright The Caputo operator makes the assumption the the function f is differentiable.
- \blacktriangleright All fractional derivatives do not satisfy the following derivative rules:
	- \blacktriangleright The derivative of the product of two functions.
	- \blacktriangleright The derivative of the quotient of two functions.
	- \blacktriangleright The chain rule.
- \blacktriangleright Unlike the Caputo and Riemann-Liouville operators, the conformable fractional derivative satisfies all of this.
- \triangleright A sparse matrix can be used when using the conformable fractional derivative, thus being more computationally effective. The other operators require a dense matrix that is more complex the the prior.

Relating the Conformable Derivative to Integer Derivatives

Let
$$
\alpha \in (n, n+1]
$$
. Let $h = \epsilon t^{(\lceil \alpha \rceil - \alpha)}$. Then $\epsilon = ht^{(1-\lceil \alpha \rceil + \alpha)}$.

$$
T_{\alpha}(f)(t) = \lim_{\epsilon \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + \epsilon t^{\lceil \alpha \rceil - \alpha)}) - f^{(\lceil \alpha \rceil - 1)}(t)}{\epsilon} \tag{1}
$$

$$
= \lim_{h \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + h) - f^{(\lceil \alpha \rceil - 1)}(t)}{ht^{(1 - \lceil \alpha \rceil + \alpha)}}
$$
(2)

$$
= t^{(\lceil \alpha \rceil - \alpha)} \lim_{h \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t+h) - f^{(\lceil \alpha \rceil - 1)}(t)}{h} \tag{3}
$$

$$
= t^{(\lceil \alpha \rceil - \alpha)} f^{\lceil \alpha \rceil}(t) \tag{4}
$$

Likewise, for $\alpha \in (0,1)$: $\qquad \qquad \mathcal{T}_{\alpha}(f)(t)=t^{1-\alpha} \frac{dt}{dt}$

Comparison with Other Fractional Derivative Operators

 $f(x) = x \quad \alpha = \frac{1}{2}$ 2

Comparison with Other Fractional Derivative Operators

$$
f(x) = \sin(x) \quad \alpha = \frac{1}{2}
$$

10 / 17

The Bagley-Torvik Equation is of the form:

$$
AD^2f(t) + BD^{\alpha}(t) + Cf(t) = g(t)
$$

where $\alpha=\frac{3}{2}$ 2

This equation simulates the motion of a rigid plate immersed in a Newtonian fluid. This is also used to model viscoelastic fluids in a general setting.

Using a version of the Bagley-Torvik Equation:

$$
f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x) \qquad f(0) = f(2) = 0
$$

where $f(x) = x(2-x)e^{-x}$ is the exact solution.

We will analyze the effect of the value of α on the eigenvalues of the matrix representation of the differential equation, as well as its effect on the condition number of the matrix.

The effect on the eigenvalues when solving fractional differential equations

The eigenvalues of a matrix demonstrate its stability. The following graph is for a $10^4 \times 10^4$ matrix.

The effect on the condition number with varying α values

The condition number measures how sensitive a function is to changes in the input. The following graph is for a $10^4 \times 10^4$ matrix.

The effect on the condition number with increasing matrix size 3

$$
f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x) \qquad M_n(\mathbb{R})
$$

15 / 17

The effect on the relative difference with increasing matrix size

$$
f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x)
$$
 Convergence Order \approx 1.9957
Relative Difference for Increasing Matrix Sizes

16 / 17

- 1. The conformable derivative gives a rough estimate of the calculation
- 2. It provides a computationally cheap approximation of the fractional derivative