Finite Difference Solution to the Bagley-Torvik Equation

Aaron Larsen<sup>1</sup>

<sup>1</sup> Brigham Young University, Utah, USA

UCUR 2020/Utah State University/February 7, 2020

# BYU

- 1. The Fractional Derivative
- 2. Fractional Derivative Operators
- 3. The Conformable Fractional Derivative
- 4. Condition Number
- 5. Eigenvalues

- Used to model physical and engineering processes
- Used to model anomalous diffusion
- Economic growth modeling
- Model of the Ebola Hemorrhagic Fever

#### General definition of the first derivative:

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=D^1f(x)$$

This definition can be applied to  $D^n f(x)$  where  $n \in \mathbb{N}$ .

Since the 17th century, mathematicians have considered when n is a non-integer. Thus began the study of fractional calculus.

#### Caputo Operator

$$D_a^{\alpha}(f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_a^t \frac{f^{(n)}(x)}{(t-x)^{\alpha-n+1}} dx$$

**Riemann-Liouville Operator** 

$$D_a^{\alpha}(f)(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_a^t \frac{f(x)}{(t-x)^{\alpha-n+1}} dx$$

Where  $\alpha \in [n-1, n)$ 

Note:  $\Gamma(x) = (x - 1)!$ 

### The Conformable Fractional Derivative

Khalil, et al. (2013) presented the following definition:

For  $f:[0,\infty) o \mathbb{R}$  and t>0,

$$T_{lpha}(f)(t) = \lim_{\epsilon o 0} rac{f(t+\epsilon t^{(1-lpha)})-f(t)}{\epsilon}$$

Where  $\alpha \in (0, 1)$ 

$$T_{\alpha}(f)(t) = \lim_{\epsilon \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + \epsilon t^{(\lceil \alpha \rceil - \alpha)}) - f^{(\lceil \alpha \rceil - 1)}(t)}{\epsilon}$$

Where  $\alpha \in (n, n+1]$ 

This is a more local definition of the fractional derivative, as opposed to the global nature of the Riemann-Liouville and Caputo operators.

### Differences between the fractional derivative operators and the conformable fractional derivative

- Using the Riemann-Liouville operator,  $D_a^{\alpha}(1) \neq 0$ .
- The Caputo operator makes the assumption the function f is differentiable.
- All fractional derivatives do not satisfy the following derivative rules:
  - The derivative of the product of two functions.
  - The derivative of the quotient of two functions.
  - The chain rule.
- Unlike the Caputo and Riemann-Liouville operators, the conformable fractional derivative satisfies all of this.
- A sparse matrix can be used when using the conformable fractional derivative, thus being more computationally effective. The other operators require a dense matrix that is more complex the the prior.

### Relating the Conformable Derivative to Integer Derivatives

Let 
$$\alpha \in (n, n+1]$$
. Let  $h = \epsilon t^{(\lceil \alpha \rceil - \alpha)}$ . Then  $\epsilon = ht^{(1 - \lceil \alpha \rceil + \alpha)}$ .

$$T_{\alpha}(f)(t) = \lim_{\epsilon \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + \epsilon t^{(\lceil \alpha \rceil - \alpha)}) - f^{(\lceil \alpha \rceil - 1)}(t)}{\epsilon} \qquad (1)$$

$$= \lim_{h \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t+h) - f^{(\lceil \alpha \rceil - 1)}(t)}{ht^{(1 - \lceil \alpha \rceil + \alpha)}}$$
(2)

$$= t^{(\lceil \alpha \rceil - \alpha)} \lim_{h \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t+h) - f^{(\lceil \alpha \rceil - 1)}(t)}{h}$$
(3)  
=  $t^{(\lceil \alpha \rceil - \alpha)} f^{\lceil \alpha \rceil}(t)$ (4)

Likewise, for  $lpha \in (0,1)$  :  $T_lpha(f)(t) = t^{1-lpha} rac{df}{dt}$ 

#### Comparison with Other Fractional Derivative Operators

 $f(x) = x \quad \alpha = \frac{1}{2}$ 



### Comparison with Other Fractional Derivative Operators

$$f(x) = \sin(x) \quad \alpha = \frac{1}{2}$$



10/17

The Bagley-Torvik Equation is of the form:

$$AD^2f(t) + BD^{lpha}(t) + Cf(t) = g(t)$$

where  $\alpha = \frac{3}{2}$ 

This equation simulates the motion of a rigid plate immersed in a Newtonian fluid. This is also used to model viscoelastic fluids in a general setting. Using a version of the Bagley-Torvik Equation:

$$f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x)$$
  $f(0) = f(2) = 0$ 

where  $f(x) = x(2-x)e^{-x}$  is the exact solution.

We will analyze the effect of the value of  $\alpha$  on the eigenvalues of the matrix representation of the differential equation, as well as its effect on the condition number of the matrix.

## The effect on the eigenvalues when solving fractional differential equations

The eigenvalues of a matrix demonstrate its stability. The following graph is for a  $10^4\times10^4$  matrix.

#### The effect on the condition number with varying $\alpha$ values

The condition number measures how sensitive a function is to changes in the input. The following graph is for a  $10^4\times10^4$  matrix.



# The effect on the condition number with increasing matrix size

$$f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x)$$
  $M_n(\mathbb{R})$ 



 $15 \, / \, 17$ 

## The effect on the relative difference with increasing matrix size

$$f''(x) + f^{\frac{3}{2}}(x) + f(x) = g(x)$$

Convergence Order pprox 1.9957



- 1. The conformable derivative gives a rough estimate of the calculation
- 2. It provides a computationally cheap approximation of the fractional derivative